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Abstract 

Data plays a central role in many of today's business models. With the help of advanced analytics, 
knowledge about real-world phenomena can be discovered from data. This may lead to unintended 
knowledge spillover through a data-driven offering. To properly consider this risk in the design of data-
driven business models, suitable decision support is needed. Prior research on approaches that support 
such decision-making is scarce. We frame designing business models as a set of decision problems with the 
lens of Behavioral Decision Theory and describe a Design Science Research project conducted in the context 
of an automotive company. We develop an artefact that supports identifying knowledge risks, concomitant 
with design decisions, during the design of data-driven business models and verify knowledge risks as a 
relevant problem. In further research, we explore the problem in-depth and further design and evaluate the 
artefact within the same company as well as in other companies. 
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Motivation 

Many of today's successful businesses have data as a central resource in their business model (BM), as 
prominent examples of Facebook, Amazon or Google show. Now, data-driven business models (DDBMs) 
are in the focus of both practice and academia (Günther et al. 2017; Hartmann et al. 2016). Also born offline 
organizations investigate the business value of data and seek for new DDBM (Seiberth and Gründinger 
2018). Through more and more comprehensive data sets combined with advanced analytics methods, 
knowledge on real world phenomena can be discovered and materialized in models or algorithms. Thus, 
not only data but also knowledge-related value objects can be part of an offering, like selling predictions or 
models (Hirt and Kühl 2018). However, exchanging data across organizations, can lead to unwanted 
knowledge spillovers (Ilvonen et al. 2018). This leads to risks for organizations in designing DDBMs. 
Following the call on more IS research on methods and tools for supporting BM innovation (Veit et al. 2014) 
and specifically the call for research on risk and risk management (Tesch and Brillinger 2017) as well as the 
call for more research about managing knowledge risks in strategic IS settings (Loebbecke et al. 2016), we 
aim to answer the following question: How to identify knowledge risks while designing data-driven 
business models and provide decision support for considering knowledge risks in business model design 
decisions? To answer this research question, we follow a Design Science Research (DSR) approach (Hevner 
et al. 2004) embedded in a research project with an automotive company. 

Background  

Data has been recognized as a source for improving and innovating BMs (Günther et al. 2017). We 
understand BMs here as an “architecture for the product, service and information flows, including a 
description of the various business actors and their roles; and a description of the potential benefits for the 
various actors; and description of the sources of revenue” (Timmers 1998, p. 4). A data-driven business 
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model (DDBM) is a business model relying on data as a key resource (Hartmann et al. 2016), creating 
customer value with analytics capabilities (Wixom and Schüritz 2017), offering data, knowledge or decisions 
(Hartmann et al. 2016; Wixom and Schüritz 2017) to realize monetary value (Schüritz et al. 2017). Thus, 
data represents both a firms resource (Hartmann et al. 2016) and a flow across business actors in DDBM. 
Data flows are important when analyzing BMs in value networks (Solaimani et al. 2015), e.g. in the context 
of cyber physical systems (Terrenghi et al. 2018) or for identifying risk factors (Brillinger, 2018). 

These data flows are the reason why knowledge risks are associated with DDBM: Value networks in DDBM 
imply inter-organizational sharing of data, and critical knowledge could be derived via data analytics from 
such data (Ilvonen et al. 2018), thereby leading to unwanted knowledge spillovers (Loebbecke et al. 2016). 
“Knowledge spillover takes place when valuable knowledge spills out of the organization to competitors 
who use this knowledge to gain competitive advantage” (Durst and Zieba 2017, p. 54). The knowledge-based 
value proposition that is at risk in DDBM is however typically not explicit, as the knowledge is only implicitly 
represented by the dataset or by the knowledge-based value proposition (e.g., observing a single 
recommended item in an electronic store doesn’t leak the complete recommender algorithm, but observing 
many recommended items in an electronic store may do so). E.g. in particular, machine learning models 
can be retrieved by malicious competitors via API access (Tramèr et al. 2016). Such risks need to be 
considered while designing DDBM. 

When designing BMs, decision-makers have to find a balance between acceptable risk and estimated return 
(Tesch and Brillinger 2017). Designing a BM therefore needs to be understood as a set of choices 
(Casadesus-Masanell and Ricart 2010). Tools that aim to support decision making therefore need to focus 
not only focus on the estimation of returns, but also on relevant risk factors of a BM (Brillinger 2018). 
Existing research already identified data as a risk factor in supply chain integration (Ilvonen et al. 2018) or 
BMs (Brillinger 2018) and data risk assessment as an activity in the BM innovation process (Hunke et al. 
2017). One way in which tools can support decision-making in the face of risk factors is to clearly represent 
relevant information associated with the risk to decision makers (Tesch and Brillinger 2017). 

Methods and tools have already emerged that support the innovation of BMs in a corporate context, e.g. 
serving as a structured representation and communication tool (Täuscher and Abdelkafi 2017), as decision 
support for evaluating BMs and inform decisions (Tesch and Brillinger 2017), or identifying BM risks 
(Brillinger 2018). Although, there are few novel tools and methods available which incorporate data a 
specific lens of analysis, that are not widely accepted, e.g. connecting data with the value proposition (Kühne 
and Böhmann 2019), representing data flows in cyber physical systems (Terrenghi et al. 2018) or supporting 
data-driven ideation workshops (Kronsbein and Mueller 2019). Fewer are available for the evaluation of 
and decision support for DDBM. As stated above, DDBM however incorporate an additional dimension of 
risks, specifically the risk of critical knowledge spillover through the data-driven offering. Thus, decision 
makers require decision support to inform their decision on sharing and protecting core knowledge. i.e. 
balancing acceptable risk and estimated return in a knowledge related value proposition. To the best of our 
knowledge no research exists that focuses on decision-making with respect to knowledge risk within the 
process of designing DDBM. 

Research Approach – Design Science Research 

We follow a DSR approach to answer our research question how to represent knowledge risks of DDBM in 
the design process to provide suitable decision support. DSR was chosen as answering the research 
question necessitates the development of a design artefact, namely the risk representation. The research 
presented in this paper is embedded in a three-year applied research project that aims to develop DDBM 
for an automotive company (Comp). To assure the collaborating organization a high level of anonymity, 
only minimal information about the cases are provided. Comp is one of the world's leading companies in 
engineering and testing of automotive systems. Comp has more than 10,000 employees and operates in a 
B2B context. Comp wants to offer new products and services based on data analytics.  

With respect to DSR, Comp constitutes the environment in which research problems are defined and shown 
to be relevant (Hevner et al. 2004). Our research approach has been iterative, with each iteration having 
elements of (i) identifying and answering problem statements from the environment of relevance (Comp), 
(ii) elements of design and evaluation, with design artefacts supporting decision making, and (iii) elements 
of rigor, with Behavioral Decision Theory (Simon 1959) as guiding theory, and additional background from 
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IS research on DDBM innovation, and decision support artefacts. In the present paper we report four 
iterations. Of these, iterations one and two showcase the wider research project setting and the background 
work done and necessary to investigate the research question. Iterations three and four showcase the 
relevance of the research question, the developed design artefacts, and the relationship of designed artefacts 
both with guiding theory, and background literature. Table 1 illustrates our intermediate results structured 
along the three cycles of DSR (Hevner et al. 2004). The iterations are described in detail the next section 
below. 

Iterations, Evidence Relevance Cycle Rigor Cycle Design Cycle 

Iteration 1: Scoping and 
Ideation 

Problem Statement: Need 
suitable tools and best 
practices for guiding the 
development process of 
DDBM. 

Application of artefact: 
Matrix structures existing use 
cases of Comp. 

Knowledge Base: Literature 
on data monetization patterns 
and the business model 
innovation process. 

Artefact: Matrix for 
structuring existing use cases 
in relationship to different 
ways of generating value with 
data (data monetization 
patterns) and different levels of 
maturity (phases in business 
model innovation process). 

Goal: Identify requirements 
for tools and methodologies 
that support the design process 

Evidence: 17 interviews with 
managers (duration between 
30 and 70 min), one workshop 
(4h, 4 participants), one-day 
ideation workshop with 10 
participants 

Iteration 2: Decision 
Making 

Problem Statement: Find a 
suitable representation of and 
decision criteria for DDBM use 
cases to inform decision-
making within the design 
process of a DDBM. 

Application of artefact: 
structuring 23 DDBM ideas of 
Comp. 

Knowledge Base: Literature 
on realizing customer value 
with data analytics.  

Guiding Theory: We are 
analyzing our decision problem 
with the lens of Behavioral 
Decision Theory (Simon 1959).  

Artefact: Data Product 
Canvas as representation of 
DDBM use cases. 

Design Requirement: 
Representation needs to focus 
on the main elements of a 
DDBM, in particular data 
sources, analytics activities, 
data-driven value proposition 
and customer needs. 

Goal: Identify decision criteria 
specific for DDBM 

Evidence: Idea selection and 
aggregation (4 meetings with 1 
company representative), 
Decision making workshop (60 
min, 4 participants) 

Iteration 3: Refining 
Decision 

Problem Statement: For 
every interaction with an actor, 
the exchanged data, services, 
money need to be transparent 
to decide on benefits and risks. 

Application of artefact: 
Representing one DDBM with 
various with data, money and 
value flows. 

Knowledge Base: Literature 
on value network and flow-
based representation of BMs. 

Guiding Theory: Along with 
Behavioral Decision Theory we 
identified further decision 
inputs: actors, the exchanges 
between actors and the balance 
of value of exchanges. 

Artefact: representing a 
DDBM as an actor network, 
extended with visualizing data 
flows 

Design Requirement: The 
artefact should incorporate a 
transaction-based 
representation of BMs and data 
as an additional value flow to 
inform decision. 

Goal: Suitable representation 
for business interactions in 
DDBM serving as decision 
criteria. 

Evidence: One workshop (2h, 
4 participants). 

Iteration 4: Focus 
knowledge risks 

Problem Statement: Need 
to decide on what knowledge to 
share (monetize) and what 
knowledge to protect in a 
DDBM.  

Application of artefact: 
Representing one DDBM with 
additional knowledge flows 
and knowledge boundary. 

Knowledge Base: Literature 
on knowledge risks and 
knowledge boundary. 

Guiding Theory: Behavioral 
Decision Theory: knowledge 
flows as an additional decision 
input for data completeness 
and flow-based representation 
with knowledge boundaries as 
supporting cognitive processes 
to identify knowledge risks.  

Artefact: Extended flow-
based representation of actor 
interactions with knowledge 
boundary and differentiated 
flow (data vs. knowledge). 

Design Requirement: 
Differentiate between data and 
knowledge-related flows and 
representing the knowledge 
boundary. 

Goal: Suitable representation 
to support identification of 
knowledge risk and balance 
risks and benefits in a DDBM 
design process. 

Evidence: planned (see 
outlook) 

Table 1. Overview of the conduced DSR project 

Results 

Iteration 1: Scope and Ideation 

During scoping and ideation for DDBM at Comp, decision makers were faced with the challenge to find 
methods and tools supporting the DDBM process. To identify requirements for supporting the DDBM 
design phase, and to explore Comp’s existing DDBM ideas, we conducted 17 interviews with managers from 
different business units. We identified as one concrete requirement of Comp to categorize DDBM ideas. In 
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addition to the interviews, we conducted a literature review to find suitable approaches meeting the 
requirements of Comp. In particular, we identified five patterns of data monetization (Breitfuß et al. 2019), 
and six phases of the DDBM innovation process (Hunke et al., 2017). Based on the literature review, we 
noticed the scarce related work on the topic. 

We created a matrix that maps ideas for DDBM to these categories. This matrix (the design artefact of 
iteration 1) was discussed in a half-day workshop with four managers of Comp who are specifically 
responsible for data-driven innovations. We again used the matrix to structure the direction of a one-day 
ideation workshop with 10 participants from product-, business and innovation management of Comp (6) 
as well as other organizations (4). Based on interviews and workshops, we identified as requirement the 
need for a structured representation of DDBM that is able to structure discussions and ideation by focusing 
on data analytics-related value propositions and to identify relevant decision criteria for evaluating ideas. 

Iteration 2: Framing the Problem Statement as a Decision Problem 

Building on iteration 1, the goal of iteration 2 is to identify decision criteria and a suitable representation 
for DDBM that takes aspects from data and analytics into account. Therefore, we refined our research 
problem towards a decision problem, such that we understand “business models [to be] made of concrete 
choices and the consequences of these choices” (Casadesus-Masanell and Ricart 2010, p. 198). 
Subsequently, we employ Behavioral Decision Theory (Simon 1959) as a guiding theory. Behavioral 
Decision Theory aims to understand decision making patterns and tendencies of humans, e.g. to design 
appropriate decision support tackling these tendencies. BM frameworks and evaluation criteria serve as a 
decision support (Osterwalder and Pigneur 2010; Tesch and Brillinger 2017) via structuring the required 
decision inputs, ensuring data completeness in line with Behavioral Decision Theory. Based on this 
background from Behavioral Decision Theory, and the relevance identified within Comp for the need of a 
structured representation of DDBMs, we articulate the first design requirement for an artefact that supports 
decision-making as part of the DDBM design process: 

Design Requirement: A DDBM representation needs to focus on the main elements of a DDBM, 
particularly data analytics, value proposition and customer needs. 

Within iteration 2, we developed a component-based representation of DDBM as design artefact. We 
defined as main elements the following, in line with prior published research where available: data as a key 
resource (Hartmann et al., 2016), analytics key activities (Wixom and Schüritz 2017), data-driven value 
proposition (Hartmann et al. 2016) and customer problems and needs (Osterwalder and Pigneur 2010). 

We applied this artefact in the context of Comp, to structure the representation and evaluation of 23 DDBM 
ideas. The ideas were discussed in a workshop with four managers directly responsible for data-driven 
innovations. The artefact informed the decision to further elaborate and explore two of the 23 DDBM ideas. 
One of these was prioritized and was worked on in iterations 3 and 4. As Comp’s DDBM ideas largely rely 
on external data sources from their customers and other actors, it became clear in this workshop that a 
visualization of the partner network and interactions was missing in the current artifact; and it was expected 
that this would be necessary to inform further decision-making. 

Iteration 3: Refining the Decision Problem 

Based on the insight of iteration 2, for every business interaction with an actor, the exchanged data, services 
and money need to be transparent. This is necessary to be able to decide on benefits and risks in the design 
process; and on the overall feasibility of an DDBM idea. This can be understood as visualizing the roles, 
deliverables and transactions of a value network (Alee, 2008).  

Analyzing the partner network in a BM is an important step for improving the decision base (Brillinger 
2018), especially for Comp as the selected BM use case contains the usage of external data sources and 
provision of corresponding value in exchange. Transaction-based representations of BM (Gordijn and 
Akkermans, 2001) have already emerged to visualize the flow of business values for BM, e.g., based on Cyber 
Physical Systems (Terrenghi et al. 2018). From the view of Behavioral Decision Theory, we identified as 
further decision inputs actors, the exchanges between actors and the balance of value of exchanges 
(Brillinger 2018). Based on this background, and the relevance identified within Comp to represent 
business interactions and network, we articulate the second design requirement: 
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Design Requirement: A transaction-based representation of BMs and data as an additional value flow is 
required to inform the decision on value network with actors and to balance benefits and risks. 

We therefore created, as design artifact within iteration 3, a representation of DDBMs as value network 
including actors, value exchanges and customer needs as the main elements. An actor is “an independent 
economic (and often legal) entity” (Gordijn and Akkermans 2001, p. 13) and has one or several roles in the 
network, like customer, data provider, end user or key partner. Actors are exchanging value objects like 
data, money, services, products or other benefits. Exchanges are triggered by customer needs.  

We instantiated this representation with the selected DDBM use case within Comp. The DDBM was 
discussed and refined in two two-hours workshops, one with two managers responsible for data-driven 
innovations and one with six representatives from product management, R&D and engineering. Comp 
generates and refines data-driven aging models of physical components based on data from different data 
sources. Based on this model, Comp is able to sell predictions for residual life time and value, as well as 
usage recommendations. Already during the first workshop, this representation led to the insight that 
knowledge is the core asset of Comp’s DDBM on which all other data-driven services of the BM rely. This 
immediately triggered the awareness that the knowledge materialized in the data-driven model is critical, 
and could in principle be at risk in the DDBM, especially when it is part of the value proposition, thus 
leading to unintended knowledge-spillovers.  

Iteration 4: Focus on core knowledge asset and knowledge risks 

Based on the workshop’s insight from iteration 3 that knowledge is the critical asset of a DDBM, we frame 
a more detailed decision problem: Find a trade-off between benefits of monetizing knowledge (i.e., 
knowledge as part of the value proposition (Hartmann et al. 2016)) and the risk of losing this knowledge. 
To take this decision seriously, decision makers needs transparency about the knowledge contained in the 
exchanged data sets or digital value objects. This is as well a relevant question for Comp as their business 
heavily relies on engineering know-how; for instance, one business area manager stated during the 
interviews: “How can we build new [data-driven] services around our engineering know-how without 
fully giving the knowledge away?”. 

In DDBM knowledge on real world phenomena is materialized in knowledge-related assets, like algorithms, 
predictions or models that can easily be transferred across actors and may be part of the value proposition 
of the business model. “Value creation and capture require that companies choose between knowledge 
sharing and protection, or try to find some way of incorporating these two alternatives” (Olander et al. 2009, 
p. 352). This lead to a risk/benefit decision between sharing or protecting knowledge-related assets. With 
the lens of Behavioral Decision Theory, this knowledge-related flows serve as an additional decision input 
to ensure information completeness. In addition, the potential risk of unintended knowledge spillover 
should be visualized in our artefact to support decision processes. Prior research on knowledge risks found 
that making the knowledge boundary explicit, enhances the decision quality (Lee et al. 2015). Based on this 
insight and proposal to visualize knowledge boundaries by Lifshitz-Assaf (2017), we articulate the next 
design requirement for our artefact: 

Design Requirement: To consider knowledge risks while designing DDBM data- and knowledge-related 
flows and together with their knowledge boundaries need to be represented. 

The artefact from iteration four consists of actors (e.g., business model owner, data provider, customer 
segment), value flows (e.g., goods, data, knowledge, money) and the visualization of knowledge boundaries 
as dashed circles. The DDBM of Comp (from iteration 3) was represented as an instantiation of the refined 
artefact. To ensure anonymity Figure 1 shows a fictitious DDBM as an illustrative example. BM owner is 
exchanging data against money with Data Provider to build a data-driven model of a real-world 
phenomenon based on his own expert knowledge. Thus, BM owner is materializing his core knowledge in 
a digital value object. All other services (i.e., making predictions or recommendations from customer data 
based on the model) the BM owner is offering are relying on that core knowledge. BM owner is offering two 
data services to customers from the same (A) and different (B) industry respectively. In the former case, 
BM owner wants to protect his core knowledge embedded in the value proposition to assure competitive 
advantage and to prevent unintended knowledge-spillover; and in the latter sharing the knowledge with 
other industries is seen as less critical.  
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Figure 1. Concept of visualizing knowledge risks in a DDBM 

Contributions 

Our main contribution is twofold: First, we identified that knowledge risks are a relevant decision 
parameter in the design process of DDBM. Based on the Behavioral Decision Theory, we framed this insight 
as decision problem and collected first evidence for its relevance. We found this as an specific aspect of 
DDBM in contrast do non data-driven BM and complementing existing research on business model risk 
factors (Brillinger 2018). This finding is grounded on empirical evidence from Comp (Iteration 3 - 
identification of value objects in actor interactions; Iteration 4 - identification of associated knowledge risks, 
and the necessity for a knowledge boundary). Knowledge risks are especially relevant for knowledge 
intensive service business, as these have valuable core knowledge. In this regard, Comp serves as a typical 
case as it is offers services and products based on their expert know-how in automotive engineering. 

Our second contribution are the design requirements for providing suitable decision support. Based on an 
analysis of the decision process, we identified the need to represent the flow of data and knowledge as value 
objects; and the need to represent the knowledge boundary. We developed first prototypes considering our 
design requirements and we collected first evidence that those representations support the decision making 
during the DDBM design process. A baseline proposition for further research in the field therefore is: 
Considering knowledge risks in the design process of DDBM enhances the decision quality of the design 
process and thus the success of the DDBM. 

Outlook: Problem Exploration and Artefact Evaluation 

In order to complete our DSR project, we have to “observe and measure” (Peffers et al. 2007) how well our 
artefact enhances the decision quality in the design process of DDBMs. In order to do so, we follow a 
continuous evaluation approach, as suggested by Sonnenberg and Vom Brocke (2012). First, we want to 
further investigate the problem relevance of knowledge risks in DDBM. Therefore, we are currently 
conducting an interview study with approximately ten experts from the field of BMs, data analytics and risk 
management. The goal is here to further elaborate potential causes and consequences of knowledge risks in 
DDBM and corresponding measures for the BM. We will specifically also look for stories of failure of DDBM 
due to not considering knowledge risks in the design process. Further, we expect to craft additional design 
requirements from the interviews. Second, after refining our artefact, we plan to evaluate the structure of 
our artefact for simplicity and completeness as well as applicability again with expert interviews. Third, we 
want to evaluate that the final artefact enhances the decision quality in the design process of DDBM of 
Comp by taking knowledge risks into account. We plan to do this for a second DDBM use case within Comp. 
Further, based on the Behavioral Decision Theory we want to evaluate if and under which circumstances 
our artefact can enhance the decision quality in DDBM design process in other (than Comp) organizational 
contexts. For both, we plan to do participatory workshops with decision makers from Comp and other 
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organizations We aim to measure perceived decision quality to evaluate efficacy of the artefact drawing on 
existing measuring instruments, e.g. (Tan et al. 1995). 
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